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This study investigates the phase shift induced by Laue transmission in a perfect

Si crystal blade in unprecedented detail. This ‘Laue phase’ was measured at two

wavelengths in the vicinity of the Bragg condition within a neutron

interferometer. In particular, the sensitivity of the Laue phase to the alignment

of the monochromator and interferometer (rocking angle) and beam divergence

has been verified. However, the influence of fundamental quantities, such as the

neutron–electron scattering length, on the Laue phase is rather small. The

fascinating steep phase slope of 5.5� [(220) Bragg peak] and 11.5� [(440) Bragg

peak] per 0.001 arcsec deviation from the Bragg angle has been achieved. The

results are analysed using an upgraded simulation tool.

1. Introduction

Neutron interferometers (IFMs) are used to determine

quantum mechanical effects on the neutron wave. As for

X-ray interferometers, the interaction of the neutron wave

within the IFM is described by the dynamical theory of

diffraction (Authier, 2006). Such interferometers are built in

the form of a Mach–Zehnder IFM and consist of one large

silicon crystal. Here we use such a setup to measure the phase

of a perfect Si crystal sample close to the Bragg position. The

first measurements of this ‘Laue phase’ were presented in

Springer et al. (2010). They offer in principle the possibility of

extracting fundamental quantities such as the neutron–

electron scattering length, gravitational short-range inter-

actions and the Debye–Waller factor (Ioffe & Vrana, 2002;

Wiedtfeldt et al., 2006; Greene & Gudkov, 2007). For this

purpose, it is necessary to improve the accuracy of the phase

measurement – and consider all systematic phase effects in the

analysis.

Our previous article (Springer et al., 2010) left several open

questions concerning the influence of different parameters;

therefore this article presents a more systematic investigation

of the Laue phase. As experimental improvements, an

aluminium box for temperature stabilization of the inter-

ferometer has been installed, the number of measurements

has been increased and the angular range of the beam

deflection has been further enlarged.

Previous publications related to the Laue phase are Graeff

et al. (1978), Rauch (1989), Hirano & Momose (1996), Ioffe &

Vrana (2002), Authier (2006), Lemmel (2007), Springer et al.

(2010), Lemmel (2013b). x2 explains the experimental setup,

where a large six-blade Si perfect crystal interferometer with

precisely oriented lattice planes was used. All the measure-
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ments were performed at instrument S18 at the ILL Grenoble.

In x3, we discuss important parameters to be considered in

precision experiments. These parameters are the type of

monochromator, its mosaicity, rocking position (alignment

angle between monochromator and interferometer) and IFM

geometry. We compare the experiment with theoretical

calculations of the Laue phase. All these calculations are

performed using an upgraded simulation tool; a detailed

description of the software IFMSIM is provided in Lemmel

(2013a).

2. Measurement of the Laue phase

An analytical expression of this phase is given in equation (1)

for a monochromatic plane wave in a perfect crystal blade of

thickness D (Springer et al., 2010; Zawisky, Springer &

Lemmel, 2010):

’LaueðyÞ ¼ ’Laueð0Þ � AH � y

þ arctan
y

ð1þ y2Þ
1=2

tan AHð1þ y2Þ
1=2

� �� �
ð1Þ

with

y ¼ ��� � sinð2�BÞ � E=jVhklj

AH ¼ �D=�H

�H ¼
2� cos �B � E

k� jVhklj
¼

�nr

2dLNbatomðqÞ exp½�WðqÞ� tan �B

: ð2Þ

Here, �� is the beam deviation from the Bragg angle �B = 45�,

E is the neutron energy, jVhklj is the crystal potential (Rauch &

Petrascheck, 1974) and �H denotes the

Pendellösung length, with nr repre-

senting the order of the Bragg peak, dL

representing the lattice spacing, N =

4.9939678 � 1022 cm�3 representing the

atomic density for Si, batom representing

the atomic scattering length and W the

Debye–Waller factor. The momentum

transfer is given by q ¼ 2�nr=dL.

According to the dynamical theory of

diffraction, the Pendellösung length

describes the period length of the

wavefield oscillation within the crystal

(Shull, 1968).

In general, a phase within an inter-

ferometer is measured by recording the

output intensity in the O detector versus

the rotation angle of an auxiliary phase

shifter. In our case we use a 3 mm-thick

Si phase shifter after blade 1. A Mach–

Zehnder-type interferometer together

with the sinusoidal interferogram is

depicted in Figs. 1(a), 1(b).

The principle of measuring the Laue

phase is illustrated in Figs. 1(c), 1(d)

with a rotating sample, where the rota-

tion angle is ��. For every �� a complete

interferogram is taken. The phase shift of the interferogram

due to the small sample rotation is the ‘Laue phase’. The blade

in the second beam compensates for the refractive phase of

the sample.

However, in the experiment, the sample is fixed, and a pair

of aluminium prisms deflect the beam in front and behind the

IFM blade (Fig. 2). This beam deflection is controlled via a
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Figure 1
(a) Sketch of a Mach–Zehnder interferometer with a phase shifter intersecting the two beam paths.
(b) Typical interferogram in the output O: the intensity is recorded versus the phase shifter rotation.
The phase and fringe visibility are derived from this sinusoidal intensity modulation. (c) Neutron
interferometer with rotating sample. (d) Top view of the sample with the �� angle: (1) transmitted
beam, (2) diffracted beam, (3) beam stopper.

Figure 2
(a) Top view of the experiment. The incident wave is split at blade (1) and
passes through the sample blades (3), (4) and prisms, which rotate around
the y axis (�). After recombination in blade (6), the interferogram in the
transmitted beam (O) is recorded. (b) Prism side view and mounting
angle " = 12.5� (� = 25�).



rotation � of the prisms. The correlation between the beam

deflection and the rotation angle � of the prisms is given in

equation (3) (Ioffe & Vrana, 2002):

�� ¼ � sin � ð3Þ

� ¼ 2ð1� nÞ
sin �

cos�þ cos 2"

n ¼ 1�
�2NbN

2�
: ð4Þ

The prism angle � is 25� and ", the deviation of the symmetric

prism mounting, is then 12.5� (Fig. 2); � is the wavelength, and

the nuclear scattering density NbN ¼ 2.08 cm�2 (Rauch &

Werner, 2002). In our upgraded setup, a range of � ¼ � 15� is

experimentally accessible, which accounts for the (220) case to

�� ¼ �0:06 arcsec and �0:015 arcsec for (440).

Wavelength selection. In order to compare the Laue phase at

two wavelengths, two Bragg peaks from the silicon mono-

chromator have been chosen. To separate the used Bragg

peaks (220), (440) from each other, six �i ¼ 140� silicon prisms

were arranged in front of the interferometer. From equation

(4) (Zawisky, Springer, Farthofer & Kuetgens, 2010), using the

nuclear scattering length bN ¼ 4.1507 (2) fm, the following

total beam deflection is derived:

�ð�Þ ¼ �2
X6

i¼1

NbN

�
tan

�i

2
: ð5Þ

The separation between the (220) and (440) Bragg peaks

amounts to 1300. It can be determined by performing a rocking

curve, where the rocking angle describes the rotation of the

IFM in the x–y plane relative to the incident beam (Fig. 3). By

inserting a diffraction grating (g ¼ 16 mm) in front of the

interferometer, the wavelengths in the Bragg peaks can be

determined (Bergmann & Schaefer, 1993):

� ¼ g
sin ’n0

n0
: ð6Þ

The diffraction maxima behind the grating are located at the

angle ’n0 , where n0 is the diffraction order. For the (440) case,

we derive a wavelength of (1.35 � 0.04) Å; the (220) wave-

length is twice this value: (2.71 � 0.04) Å.

2.1. Measurements in the (220) case

With the above-described Si prisms we are now able to

measure the Laue phase with � ¼ 2.71 and 1.35 Å separately.

In the calculations we use the real geometry of the inter-

ferometer, the maximal intensity of the rocking peaks (rocking

position 0) and the Bragg monochromator function with

Darwin width equal to 1. The neutron beam is calculated as a

coherent superposition of many plane waves (spherical wave),

while equation (1) describes the Laue phase with only a single

plane wave. Important for the understanding of the phase and

contrast behaviour is the averaging over all plane-wave

components. Therefore the phase slope becomes about 1/3

smaller than for a single plane wave. Fig. 4 shows the (220)

Laue phase for a wide range of beam deflections

(�� ¼ �0:0600) in front of blade 3. The slope of the phase curve

near the Bragg position amounts to 5.5�/0.001 arcsec and fits

very well with the calculations.

Two non-linearities in the phase curve (‘Pendellösung

plateaus’) can be identified at each side near the Bragg posi-

tion. These structures are related to oscillations resulting from

the interference of two internal wavefields with slightly

different wavevectors (Shull, 1968). They appear exactly at the

minima of the transmitted intensity and are described by the

arcus tangents in equation (1). The phase plateaus are at the

poles of the tangents; small changes in its argument

AHð1þ y2Þ
1=2
¼ ð2nþ 1Þ�=2 show an enhanced sensitivity to

the phase.

Besides the phase, the fringe visibility (contrast) of the

interferograms (Fig. 1) is also considered. The diminishing of
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Figure 3
Separation of the (220) and (440) Bragg peaks by the use of Si prisms in
front of the interferometer. The phase measurements will be performed
exactly at each peak maximum.

Figure 4
Measured (EXP) and calculated (SIM) Laue phase for the (220) case. The
marked Pendellösung plateaus are regions with increased sensitivity to
parameter AH.



the interference pattern with increasing �� is shown in Fig. 5.

Due to the low contrast, measurements at �� > 0:02 arcsec

become increasingly challenging. The contrast reduction is

mainly caused by a distinct phase distribution within the

divergence of the incoming beam. Asymmetric beam-path

intensities reduce the fringe visibility as well. This asymmetry

results from the blade 3 rotation during the measurement. The

Pendellösung plateaus are visible in the contrast as well.

2.2. Measurement in the (440) case

Due to the wavelength dependence in equation (3), the

realizable �� range is smaller in the (440) case. Therefore, in

Fig. 6, only one pair of Pendellösung plateaus is visible. The

slope of the phase is 11.5�/0.001 arcsec, which is consistent

with the calculation and improves previous measurements

(Springer et al., 2010). This slope is steeper (approximately

double) than in the (220) case; therefore, this case constitutes

an extremely sensitive phase versus angle correlation

(Zawisky, Springer & Lemmel, 2010).

The corresponding contrast is shown in Fig. 7. As in the

(220), the visibility decreases fast. The different size of the

error bars stems from different numbers of individual

measurements per point.

Summarizing the measurement at the two Bragg peaks, the

smaller wavelength yields a higher phase slope; however the

beam deflection range is reduced. The resulting measured

relationships and the calculations are in good agreement;

however, the question of whether the accuracy of the

measurements is sufficient for the determination of para-

meters like the scattering length will be discussed in the next

section.

3. Systematic effects on the Laue phase

In this section different parameters are varied and we find that

the Laue phase is strongly affected by the monochromator

function, rocking angle and �-axis angle. The influence of the

interferometer geometry is considered in the numerical

calculations as well. In addition to the ‘real’ geometry, where

the blade thickness varies slightly (2:940� 0:002 mm), calcu-

lations with the ‘ideal’ geometry are performed, where the

thickness is constant for all interferometer blades (2.94 mm).

Note that the fringe visibility at �� ¼ 0 is, for the ideal inter-

ferometer, significantly higher due to equal blade thicknesses

in both IFM paths. The change of the Laue phase will be

evaluated particularly at the plateau positions indicated in

Fig. 4.

3.1. Effect of various monochromator distribution functions

In the experiments a perfect crystal monochromator is used,

with the theoretical Bragg curve given by equation (7), where

I represents the intensity. The y–�� relation is given in equa-

tion (2):
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Figure 5
Measured and calculated contrast for the (220) case. The contrast
decreases with increasing beam deflection.

Figure 6
Measured and calculated Laue phase for the (440) case. The accessible ��
range shrinks, and the phase slope becomes steeper compared to (220).

Figure 7
Measured and calculated contrast for the (440) case.



I ¼ 1 jyj< 1

I ¼ 1� ð1� y�2Þ
1=2
jyj> 1: ð7Þ

In principle, one could also use a mosaic crystal mono-

chromator. In order to study the differences we extended our

simulations to the latter, represented by a Gaussian curve.

Both curves are shown in Fig. 8.

Fig. 9 shows the remarkable effect of the monochromator

functions on the Laue phase.

The difference in the phase calculated with a Bragg

monochromator minus the phase calculated with a Gauss

function depends strongly on the beam divergence 	�. This

phase difference is caused by different excitations of plane-

wave components that are slightly off-Bragg. The 	� value

used is determined from a comparison with the rocking-curve

measurement, which also depends on 	�. The best match is

obtained for 	� ¼ 1:600 (Fig. 12).

In the phase calculations the Bragg function with Darwin

width equal to 1 is used because it is the physical mono-

chromator function. However, in IFMSIM, it is possible to

change the Darwin width of the Bragg curve and interpret it as

the mosaicity of the monochromator, or the divergence of a

single wavelength. The calculations are done for a single

wavelength only since the wavelength dependence is negli-

gible within our wavelength distribution of ��=� ’ 1:5%.

3.2. Effect of the monochromator mosaicity on the Laue
phase

The beam divergence 	� for a single wavelength is deter-

mined by the mosaicity of the crystal monochromator. The tilt

of the interferometer’s lattice planes relative to the mono-
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Figure 8
Comparison of Bragg and Gauss monochromator functions.

Figure 9
Simulation of the Laue phase difference (Bragg minus Gauss 	� ¼ 1:600)
versus the beam deflection �� for the (220) case.

Figure 10
Rocking curves measured at various �-axis angles (beam divergences).
The peak broadens with increasing tilt angle �.

Figure 11
Laue phase for the (220) case at � = 0� and � = 0.09�. The slope of the
Laue phase decreases with increasing tilt. The labels ‘1st’ and ‘2nd’
indicate the positions of the Pendellösung plateaus.



chromator (�-axis angle, cf. Fig. 1c) increases the full width at

half-maximum (FWHM) of the rocking curve and, thus, the

effective mosaicity (Fig. 10). For large 	� ð4000Þ, the width of the

rocking curve is so large that the intensity remains constant in

the centre.

Fig. 11 compares the phase measurements for two different

Darwin widths. The slope decreases with increasing Darwin

width and approaches 4.3�/0.001 arcsec at a Darwin width >3.

A larger Darwin width means that parts of the beam are

further away from the Bragg condition of the interferometer

crystal, where they contribute less and less to an average

phase. This leads to a constant phase for Darwin width >3 at

each �� and therefore a fixed phase slope. The difference in

the phase values at the marked �� positions is remarkable (36–

70�). The experimental data (rocking curve, Fig. 12) fit best to

a Darwin width up to 1.2. The Laue phase difference between

Darwin widths equal to 1 and 1.2 amounts to 6� for the first

plateaus and 30� for the second.

3.3. Laue phase at different rocking positions

Because of experimental conditions, the angle between the

interferometer and the neutron beam (rocking angle) can

change slightly. The reasons for such drifts are mainly

temperature changes within the setup (monochromator–

interferometer–optical bench). Therefore, the effect of

angular drift has to be studied by considering different rocking

positions for the phase measurements. In Fig. 12, the investi-

gated positions on the rocking curve are indicated.

These positions have been used to demonstrate the change

in the Laue phase. The results are shown in Fig. 13. The slope

of the phase reduces from 5.5�/0.001 arcsec at position 0 to

3�/0.001 arcsec at position �B. It turns out that the difference

in the phase values is surprisingly large (50–75�). In order to

yield the phase uncertainty regarding the rocking angle we

repeat the above phase measurement at the rocking position

0:1800, which is the accuracy of the used rocking rotation

device. The mentioned temperature-caused drifts are avoided

by resetting the rocking position very often between the phase

measurements. The Laue phase changes by 1� (for the first

plateaus) and 6� (for the second plateaus) relative to position

0. The phase change with the rocking-angle variation can be

understood with the different phase averaging if the rocking

position changes.

The corresponding contrast curve (Fig. 14) shows that

the maximum is not at �� ¼ 0, resulting from the combination

of the rocking deviation and defocusing due to the different

thick blades in the real geometry. This can be seen in

the inset, where this situation is calculated for the ideal

geometry.
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Figure 12
Experimental rocking curve compared with the theoretical one for the
(220) case. Calculation with a Gauss monochromator with 	� ¼ 1:6200 fits
as well as a Bragg curve with Darwin width equal to 1 to 1.2. The
experimental positions on the rocking curve are�B, 0,þB with B ¼ 1:800.

Figure 14
Contrast behaviour at two different rocking positions for the (220) case.

Figure 13
Laue phase at two different rocking positions for the (220) case. The slope
depends strongly on the rocking angle.



3.4. Additional parameters

The wavelength difference �� between (220) and (440)

changes the slope of the Laue phase from 5.5�/ 0.001 arcsec to

11.5�/ 0.001 arcsec, as already shown in x2. In addition, the

slope depends strongly on the blade thickness D. A thicker

sample increases the phase versus angle correlation (Zawisky,

Springer & Lemmel, 2010). Furthermore, for thicker crystals

the plateaus move closer to the centre; however, the contrast

decreases more rapidly.

Moreover, the geometry of the prisms and their alignment

has to be taken into account. In Table 1 the phase influence

due to the alignment " for all prisms, see Fig. 2, and a rotation

in the x–y plane of all prisms (
) are given.

A very fundamental parameter is the neutron–electron

scattering length (Ioffe & Vrana, 2002), as contradicting

values exist, e.g. Garching/Argonne: bne ¼ �0.00131 (3) fm,

Dubna: bne ¼ �0.00159 (4) fm. The total scattering length

comprises the precisely known nuclear scattering length

bnuc and the momentum-dependent electrostatic neutron–

electron scattering contribution according to batom = bnuc +

Z½1� f ðqÞ�bne, where Z is the atomic number and f ðqÞ the

electron form factor [references are summarized in Sparen-

berg & Leeb (2003)]. The values differ by �bne ¼ 0:0003 fm;

two phase calculations with two such different bne values have

been performed. The difference between these two phases is

independent of the large value bnuc, which is constant and the

same in both cases. This �bne difference would change the

phase in our setup by 0.2� to 0.6� (Table 1); hence an

experimental sensitivity of 0.1� would be required. Further-

more, the electron form factor changes the bne contribution

with the wavelength, which makes the measurement at several

Bragg peaks interesting. The table summarizes the influences

of the different external and fundamental parameters.

4. Relative Laue method

To maintain the contrast at larger beam deflections, another

method has been proposed (Springer et al., 2010), where both

prism pairs in Fig. 2 are deflecting the beam in front of blades 3

and 4, respectively; however, one prism has an additional

offset angle ��. The advantage of the relative phase

measurement is demonstrated in Fig. 15: the contrast remains

constant even at larger deflection angles. For a further increase

of ��, one can use prisms either with a larger � or scattering

length density [equation (3)]. The phase sensitivity to bne

increases with ��; however the phase change remains small

(approximately 0.4�) for realistic offset angles and prism

materials.

5. Conclusions

In this study, a large neutron interferometer was used to

measure the phase shift of a perfect silicon crystal, in the

vicinity of the Bragg condition (Laue phase). The rotation

range of this crystal is �� ¼ �0:06 arcsec for the (220) and

�� ¼ �0:015 arcsec for the (440) case. Distinct phase sensi-

tivities of 5.5� (220) and 11.5� (440) per 0.001 arcsec deviation

from the Bragg angle were achieved. Additional factors that

affect this phase were identified and systematically investi-

gated. With the setup used, two pairs of Pendellösung plateaus

for the (220) case and one pair for the (440) case were iden-

tified. These plateaus are regions with increased sensitivity to

fundamental parameters. The Laue phase was measured with

an accuracy of �9� (first plateaus) and �15� (second

plateaus). An additional temperature shielding of the whole

monochromator–interferometer setup (currently planned at

S18), as well as a more accurate rocking device would be

necessary in order to increase the phase accuracy. To over-

come the contrast reduction with increasing beam deflection, a

relative measurement technique is presented.
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Figure 15
Maintaining the contrast with the ‘relative phase method’ [�� ¼ 1.1�,
��ð220Þ ¼ 0:004500].

Table 1
Change of the Laue phase at the positions of the first and second plateaus,
respectively, cf. Fig. 4 for the relevant parameter variations.

Calculation for the (220) Bragg function, Darwin width equal to 1 and real
geometry.

Parameter Variation First plateaus Second plateaus

IFM geometry Ideal/real 4.7� 10.9�

Darwin width 1/1.2 6� 30�

Rocking angle 0:1800 1.5� 6�

Wavelength 0.03 Å 1� 6�

Prism angle � 0.001� 0.2� 0.4�

Prism angle " 0.5� 0.75� 1�

Prism angle 
 1� 1� 2�

bne (440) 0.0003 fm 0.3� (0.6�)
bne (220) 0.0003 fm 0.2� 0.45�
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